简历阅读- - -双生英雄

关闭

您已阅读了2个免费的每月一篇文章中的1个。学习更多的知识。

关闭

双生英雄

在数学中的破布,财富和名望。

Yitang“Tom”Zhang在完成数学博士学位后的7年时间里,在肯塔基州和皇后区之间穿梭

y在完成数学博士学位后的7年时间里,张“汤姆”在肯塔基州和皇后区之间穿梭,为赛百味连锁餐厅工作,并做一些奇怪的会计工作。现在,他正在哈佛大学、哥伦比亚大学、加州理工学院和普林斯顿大学进行巡回演讲。他收到了很多教授的邀请,每天花两个小时与媒体打交道。这是因为,在今年4月,张证明了一个困扰数学家一个多世纪的定理。当我们打电话给张艺谋,问他对被推到聚光灯下有什么看法时,我们发现他是一个害羞、谦虚的人,对所有的小题大做都不感兴趣。

数学家一般不会出名。这可能是因为公众很难理解他们在做什么。灯泡、青霉素或DNA的重要性很容易理解,爱迪生、弗莱明和克里克都是家喻户晓的名字。相比之下,欧拉、黎曼或狄利克雷的理论似乎不在主流意识范围之内。

但数学家也在一些最具戏剧性的科学故事中扮演主角。在大多数现代科学中,这位孤身一人、默默无闻的天才多年来孜孜不倦地研究着一个开创性的理论,与其说是事实,不如说是虚构——但在数学中并非如此。安德鲁·怀尔斯(Andrew Wiles)在1995年对费马最后定理的证明,在300多年的时间里,所有的努力都无法证明它,而这一证明的秘密使得它更加引人注目。但怀尔斯在做他的研究时已经是数学精英圈的一员了。

张不仅工作相对保密,他也是一个完全不为人知的人。1999年,在完成博士学位8年后,在北京大学的关系帮助下,他在新罕布什尔大学找到了一份讲师的工作。然后,在今年4月,张宣布了一个证明,解开了一个数学上的百年难题——孪生素数猜想。“这就像攀登珠穆朗玛峰,”纽约市立大学金斯堡社区学院的数学教授Ayalur Krishnan说。

灯泡,青霉素或DNA的重要性易于理解,爱迪生,弗莱明和克里克是家喻户晓的名字。

sapolsky_th-f1

关于生活和思想时代的五个短篇故事

在接下来的五个简短章节中,进化理论家、圣达菲研究所(复杂系统研究的天堂)当选主席大卫·克拉考尔(David Krakauer)考察了连锁反应的五个方面,每个方面都代表了思想如何通过科学和文化传播。在一起…阅读更多

众所周知,随着它们变得更大,连续的素数变得更广泛地分开。双重智力猜测规定,尽管这一点,但是,只有两个(例如,11和13)彼此分开的多重素数。张证明了这一猜想的较弱变种:由于一些固定数量超过两个但不到7000万的一些固定数量,彼此分开的无限数量的多重素数。

张的成功随后从建造一种新的素数过滤器。以前的工作已经使用了一个强大的过滤器或筛子,丢弃了彼此过于距离的素数。它允许数学家证明,总是邻近的素数比某个移动平均数更近。但他们无法通过一些恒定的有限差异来证明这些对被分开。通过使筛子更少选择性,张能够达到有限的界限,代表了在百年历史上的Twin Prime猜想中取得的最重要进展。

结果是纯数学界的雷声袭击。张向他的工作提交了数学史是世界上最负盛名的数学期刊之一,有一两年的新论文的典型评论时间。张的纸在三周内被接受。很快,名人机都处于全装备。学生们停在难民室校园里张某要求他的签名。“我没想到它会造成这么大的感觉,”张某在会议上发表评论。“我看到自己出现在印度向欧洲到巴西的报纸和杂志。”根据Google趋势,双胞胎猜测开始成为主流新闻故事的不太可能的主题主流主题,在五月的话题上有100个新闻标题。

他同时驾驶和平静,围绕着对数学的爱情为中心。

张的工作也掀起了数学界的一系列后续活动,包括十几岁或以上的数学家的合作Polymath8项目该研究试图将张的证明中质数之间的最大距离减小到7000万以下。截至8月底,它已暂时将其降至4680点。加州大学洛杉矶分校的数学教授Terence Tao是此次合作的一员,他将张的工作描述为一项技术突破,应该会在解析数论的其他问题上带来更多的进展,包括哥德巴赫猜想,该猜想认为每个偶数都是两个质数的和。

伯克利的科学作家埃丽卡·克拉赖克(Erica Klarreich)拥有数学博士学位,曾写过有关张的文章。她说,他的证明证明了质数中有序与随机之间的惊人平衡。“质数绝不是随机的——它们是完全确定的,”Klarreich说。然而,它们在许多方面的表现似乎就像随机喷洒的数字,最终显示出所有可能的簇和簇。张的工作有助于将这种关于质数的猜想建立在坚实的基础上。”

从新罕布什尔郡的办公室讲话,张妙的张某回复了大多数问题,伴随着一个安静的笑声,然后是剪断的句子。他同时驾驶和平静,围绕着对数学的爱情为中心。我们对话中最重复的短语是“我是一个宁静的人”。


你什么时候开始对孪生素数猜想感兴趣的?

那是我小时候的时候。这是一个着名的问题。很容易理解许多受过教育的人。我对素质感兴趣。素数是人类智能的最大挑战之一。

为什么孪生素数问题如此著名?

首先,猜想已知长期 - 至少100或200年,可能更长。其次,声明很简单。很容易理解很多人。第三,问题被认为是非常重要的。

是什么阻止你在博士毕业后找到工作?

在那个时期很难找到一份学术界的工作。这是一个就业市场的问题。而且,我的导师也没有给我写推荐信。所以我去了肯塔基州的朋友家。他经营着几家赛百味餐厅。我在他的公司做了几年的助理。

当你在肯塔基州和皇后区工作的时候,你觉得你还会再研究数学吗?

我相信。我在等机会。我每周都会思考数学。

你什么时候第一次尝试解决双胞胎问题?

四年前大约。我试过因为当时,在这个领域,这很难,因为一些其他教授,如Goldston和Pintz和Yildirim,他们对这个问题取得了重大进展。当时很多人认为,不可能解决它。很多人都试过。最终我成功了。这就是我能说的。

为什么是你解决了这个问题而不是别人?

我认为重要原因是我持续了几年。我没有放弃。

你推测了多久?

我花了四年时间研究我的猜想。我一周工作七天。我几乎没有休息过。如果算上我花在思考这个问题上的时间,那么一天就超过了10个小时。如果算上坐在桌子前或使用电脑,那么一天要花5到6个小时。当时我每学期也教两门课。

您是否向您的同事展示了您的工作?

不,我没有。即使在我朋友的圈子里,虽然他们也是数学家,但他们不太了解这个问题。所以我刚刚提到我正在努力,但我没有向任何人展示我的工作。在我到达结果之前,我不喜欢对别人讲这么多。我是一个害羞的人。

安德鲁·威尔斯还讲述了对Fermat的最后定理的工作。

如果他告诉公众他的研究,他就不会专注于这个问题。这可能发生在我身上。有时候孤独是重要的,所以你可以专注于你正在做的事情。如果有太多的社会义务,这对我来说令人困惑。

当你意识到你解决问题时,你是否体验过任何情绪?

并非如此。我是一个非常安静的人。

你兴奋吗?

一点。不太多。

你的妻子有什么反应的?

在我发表本文之前,她对此并不了解。现在她当然很开心。我们俩都非常和平。我们不是太兴奋。

你必须在你的工作中累了。你是怎么休息的?

我喜欢听音乐和读小说或小说。这就是我的方式。我不喜欢看电视。我只听古典音乐——所有著名的作曲家,贝多芬、肖邦、勃拉姆斯、柴可夫斯基、莫扎特,所有的。我也喜欢散步。新罕布什尔州是一个散步的好地方。有时候我走路的时候会有好主意。那里有小森林,到处都是小溪。

是最可能的应用程序在加密中的应用吗?

是的,这应该是真的。

你对加密感兴趣吗?

并非如此。

纯粹的数学家如何选择要研究的问题?

那得看情况。不同的科目有不同的选择。几何学发展得很快。每年或每10年都有许多新问题。但在数论中有很多更古老的问题存在了100或200年。其中许多问题很容易理解,但却很难解决。它们更有名,因为它们容易理解。许多人理解这些问题,不仅仅是数学家。

是否有一些问题应该出名,但却因为难以理解而不出名?

对于数学家来说,如果一个问题很重要,就是出名的。但在一些主题中,像拓扑,微分几何,它只着名的数学家而不是别人,因为陈述很难理解。

你现在觉得自己很有名吗?

是的。

你在公共场合觉得很舒服吗?

现在,没关系。已经好几个月了,我已经习惯了在公众面前讲话。但我不太喜欢。我尽量避开公众。但我现在不能完全避免它。

你说你不关心资金和荣誉。为什么不?

因为我的个性。我是一个安静的人。我喜欢专注于数学,我喜欢什么。我不在乎生活条件,就像一个好房子,好车,良好的衣服。这是我的个性。我现在没有车。我有一个联排别墅,但它在加利福尼亚州,我的妻子住在哪里。在新罕布什尔州,我租一个公寓。最重要的是专注于数学本身。

你觉得Grigori Perelman有什么看法,他们拒绝了邮票奖牌?

我认为这是因为他的个性也是如此。也许他自己对自己很自豪。也许他瞧不起别人,甚至瞧不起非常重要的奖品和奖牌。

你会接受奖牌吗?

是的。

你会用这些钱做什么?

也许最好的方法是给我妻子的钱。让她处理这个问题。

你有没有想过你在地铁工作的时间?

有时候我会想。我只是以一种非常平和的方式来思考它。这已经过去了,所以我不担心。那是过去的失望。

你有科学英雄吗?

也许高斯.当我10岁的时候,我知道了他的名字。他帮助激励我学习数学。

你希望自己成为学生的榜样吗?

是的,特别是在中国。当我来到中国时,我被像英雄一样对待。他们带我去吃饭,提供了好的住房,给了我个人礼物和音乐会门票。

你现在在做什么?

我正在研究一个与哥德巴赫猜想有关的问题。

您目前的研究是由所有访谈减慢的研究吗?

一点。

你为什么这么做?

我不能完全避开它们。假设你的朋友问你——这是个问题。但是我尽量减少数量。

你想对一名想要解决问题的年轻学生会怎么样?

继续。不容易放弃。

你在哪里建议他们找到动机?

最重要的动机是真正热爱数学。


25条评论-加入讨论